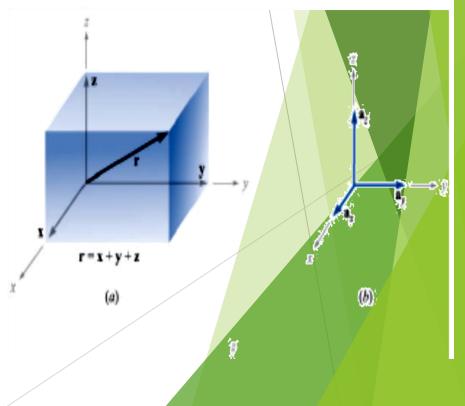
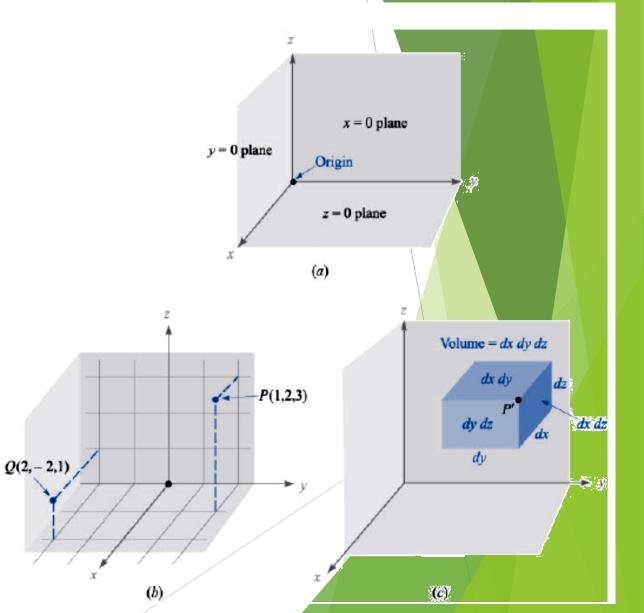
Lectures on Electromagnetic theory I

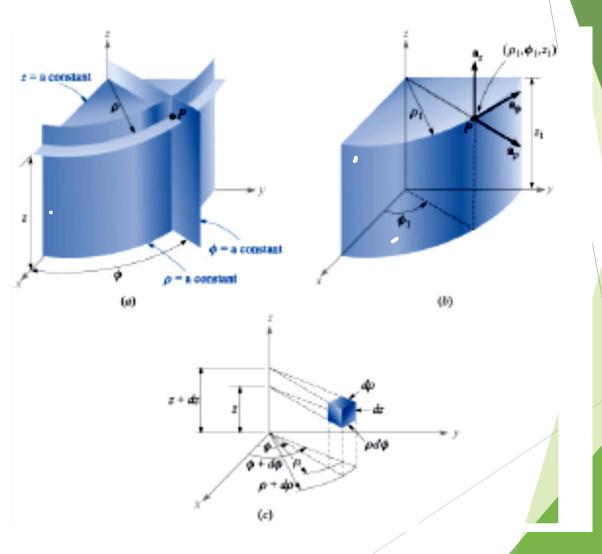

PH 2151

Lecture 2 (The three coordinate systems)

Prof. Salwa Saad Mohamed


The cartesian coordinate system

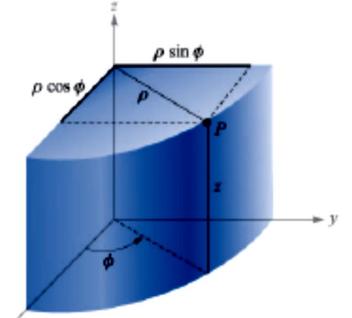
- ► The coordinates are x y z
- The position vector r=x a_x +y a_y +z a_z .
- The perpendicular unit vectors are a_x , a_y , a_z .


The cartesian coordinate system

- The displacement element dl = dx a_x +dy a_y + dz a_z
- The volume element dv= dxdydz

Circular cylindrical coordinate system

- The coordinates are ρ, ϕ, z
- The unit vectors are a_{ρ} , a_{ϕ} , a_z .
- The displacement element dl = dp a_{p} +pd ϕa_{ϕ} + dz a_{z}
- The volume element dv= dρ ρdφ dz


Circular cylindrical coordinate system

The relation of the variables in rectangular and cylindrical coordinate systems and vise versa is :

$$x = \rho \cos \phi \qquad \rho = \sqrt{x^2 + y^2} \quad (\rho \ge 0)$$

$$y = \rho \sin \phi \qquad \phi = \tan^{-1} \frac{y}{x}$$

$$z = z \qquad z = z$$

Circular cylindrical coordinate system

Dot products of unit vectors in cylindrical and cartesian coordinate systems

	aρ	a _ø	a _z	
a _x .	$\cos\phi$	$-\sin\phi$	0	
a _y .	sin φ	$\cos \phi$	0	
az.	0	0	1	

The spherical coordinate system

- The three coordinates are r, θ, Φ
- The unit vectors are $\mathbf{a}_r, \mathbf{a}_{\mathbf{\theta}}, \mathbf{a}_{\mathbf{\Phi}}$.
- The displacement element $dl = dr a_r + rd\theta a_\theta$ $+ rsin\theta d\Phi a_\Phi$
- The volume element dv= dr rdθ r sinθ dφ

The spherical coordinate system

The relation of the variables in rectangular and spherical coordinate systems and vise versa is :

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2} \qquad (r \ge 0)$$

$$y = r \sin \theta \sin \phi \qquad \theta = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}} \qquad (0^\circ \le \theta \le 180^\circ)$$

$$z = r \cos \theta \qquad \phi = \tan^{-1} \frac{y}{x}$$

The Spherical coordinate system

Dot products of unit vectors in spherical and cartesian coordinate systems

	a,	a_	aø
a _x . a _y . a _z .	$ \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta $	$\cos\theta\cos\phi\\\cos\theta\sin\phi\\-\sin\theta$	— sin φ cos φ 0

Problems:

- 1. Find the vector directed from the point $(10,3\pi/4,\pi/6)$ to the point $(5,\pi/4,\pi)$.
- 2. Find the distance between the points $(2, 6\pi, 0)$ & $(1, \pi, 2)$.
- 3. Using the spherical coordinate, obtain the volume between $1 \le r \le 2m$, $o \le \theta \le \pi/2$ and $o \le \phi \le \pi/2$.
- 4. Transform the vector A= $ya_x + x a_y + \frac{x^2}{\sqrt{(x^2 + y^2)}} a_z$ into cylindrical coordinate system .
- 5. Use the cylindrical coordinates to find the surface area of cylinder with radius a and height h.